• 欢迎来到 - 我就爱电子网 - http://www.592dz.com !
您的位置:> 我就爱电子网电子文章电子基础知识基于ATmegal28的LED屏图像数据解xx码设计 -- 正文
正文

基于ATmegal28的LED屏图像数据解xx码设计

[05-04 22:18:41]   来源:http://www.592dz.com  电子基础知识   阅读:9548

 

概要:文字图像更改的方法主要有:显示屏通过串口或网线与计算机连接实现更改;通过GPRS网络实现数据的远程传输,接收后在计算机上用特定软件解码后发送到LED显示屏显示。以上方法始终需要在计算机平台上实现,附加成本较高。设计利用手机作为发送端,发送彩信至GPRS模块,利用ATmegal28单片机直接对彩信图像进行解码然后发送到LED显示屏上进行显示。l JPEG解码可行性分析 该设计所用全彩LED屏接收的数据格式为Xmp格式,Xmp格式是简化的BMP格式。Xmp格式在图像数据前有6个字节表示图像的属性,第1字节为1个点的字节数;第2字节为XMP文件中包含的图片个数;第3,4字节为图像的高;第5,6字节为图像的宽,其后为图像每点的颜色。每点的颜色用2个字节表示(16位色)。由于所用全彩LED屏只有64×64像素,所以JPEG解码后还需进行图像的缩放。 JPEG解码过程中所需要的缓存主要包括原始JPEG图像数据的缓存、中间变量的缓存以及解出的Xmp数据的缓存。根据JPEG图像的复杂度及压缩比的不同,一般一帧320×240的彩色JPEG图像的大小在2~20 KB。JPEG解码缓存主要用于存储Huffman表,量化表,IDCT解码的临时结果等。这些大约需要8 KB。解出的Xmp数据的缓存要

基于ATmegal28的LED屏图像数据解xx码设计,http://www.592dz.com

基于ATmegal28的LED屏图像数据解码设计

摘 要:针对目前对全彩LED显示屏图像数据的处理需依赖计算机的情况,提出利用ATmegal28单片机实现JPEG图像解码的方法,并利用此方法实现了通过GPRS网络对全彩LED显示屏图像数据的远程传输。针对ATmegal28的资源和性能特点,对JPEG解码进行了可行性分析。重点论述Huffman解码、IDCT解码和图像缩放的优化算法在ATmegal28单片机上的实现。由于图像的处理在单片机上实现,降低了产品的成本,具有较强地生产实用性。
关键词:ATmegal28;JPEG解码;Huffman解码;IDCT解码;全彩LED显示屏


    随着LED显示屏的普及和成本的降低,LED显示屏已经成为公共场合信息宣传的一种重要工具。目前实现对LED显示屏的文字图像更改的方法主要有:显示屏通过串口或网线与计算机连接实现更改;通过GPRS网络实现数据的远程传输,接收后在计算机上用特定软件解码后发送到LED显示屏显示。以上方法始终需要在计算机平台上实现,附加成本较高。设计利用手机作为发送端,发送彩信至GPRS模块,利用ATmegal28单片机直接对彩信图像进行解码然后发送到LED显示屏上进行显示。


l JPEG解码可行性分析
    该设计所用全彩LED屏接收的数据格式为Xmp格式,Xmp格式是简化的BMP格式。Xmp格式在图像数据前有6个字节表示图像的属性,第1字节为1个点的字节数;第2字节为XMP文件中包含的图片个数;第3,4字节为图像的高;第5,6字节为图像的宽,其后为图像每点的颜色。每点的颜色用2个字节表示(16位色)。由于所用全彩LED屏只有64×64像素,所以JPEG解码后还需进行图像的缩放。
    JPEG解码过程中所需要的缓存主要包括原始JPEG图像数据的缓存、中间变量的缓存以及解出的Xmp数据的缓存。根据JPEG图像的复杂度及压缩比的不同,一般一帧320×240的彩色JPEG图像的大小在2~20 KB。JPEG解码缓存主要用于存储Huffman表,量化表,IDCT解码的临时结果等。这些大约需要8 KB。解出的Xmp数据的缓存要求的RAM相对比较固定为9 KB。综上JPEG解码大致需25 KB的RAM。ATmegal28内部只有4 KB的SRAM,所以该系统外扩了64 KB的外部RAM。


2 软件实现
    该设计采用avr—gcc作为编译工具。avr-gcc默认设置栈由内部RAM的顶部向下生长。由于图像处理过程中需要占用大量的RAM空间,所以应该通过设置把所有数据区移到外部RAM,只留栈区在内部RAM,避免数据的相互覆盖。
    JPEG解码过程主要包括Huffman解码、反量化及IDCT变换、色彩变换等模块。该文采用的LED显示屏是64×64点像素,并且只能显示Xmp格式的图片。因此在JPEG解码后需增加图像的缩放模块。其流程框图如图1所示。

 

2.1 Huffman解码的实现
    Huffman解码是解码过程中重要的一环。传统的哈夫曼解码需要逐位查找哈夫曼表,进行比较判断,由于查找过程需要大量的移位及循环。这样的解码效率非常低。针对这种情况,充分考虑到ATmegal28的存储容量的限制,在读文件头时,软件事先构造出不同码长下的哈夫曼码字的最小值表和最大值表如表1所示,最小值在哈夫曼表中的索引以及哈夫曼树各叶子结点对应的编码表。

 

    在解码的时候,读取1串二进制数据,分别与各码长下的最大值和最小值进行比较,如果在哈夫曼表中没有该码长的码字,说明该比特数据不是完整的Huff_man编码,接着读取下一个比特数据加在前面的比特数据组成的新的码字,然后再在最小值表和最大值表中进行查找,直至找到确切的码字。最后把该码字减去同一码长下最小值,加上此最小值在哈夫曼表中的索引即可得到该码字在编码表中的位置。
2.2 IDCT变换的实现
    将8×8块中的颜色分量单元的64个值逐一乘以对应的量化表内位置相同的系数,然后再将64个数据进行Z字型的重新排列,进行IDCT变换。IDCT的运算量很大,其中要进行大量的浮点乘法和加法运算,因而在解码过程中IDCT所占时间最多。采用行列分解法先将二维IDCT分解成一维8点的IDCT,对于一维8点IDCT采用Loeffler的快速算法。图2为Loef—fler算法的流程图,Loeffler算法运算因子的解释如图3 所示。

 

    直接对旋转因子进行计算需要4次乘法和2次加法,这样1次8个点的一维IDCT变换总共需要14次乘法和26次加法。可以对旋转因子进行变形如式(1)所示: 

   
    从而1次旋转因子计算只需要3次乘和3次加。进而进行1次一维IDCT只需11次乘和29次加。因为乘法运算的代价高于加法运算,所以这种变形是有益的。完成一次二维的IDCT运算总共要进行16次的8点一维IDCT运算。由于ATmegal28在速度方面的限制,在IDCT运算过程中把浮点操作改进为整形运算,并且把

[1] [2]  下一页


标签:电子基础知识电子基础大全,电子基础知识应用电子基础知识
《基于ATmegal28的LED屏图像数据解xx码设计》相关文章