• 欢迎来到 - 我就爱电子网 - http://www.592dz.com !
您的位置:> 我就爱电子网电子文章EDA/PLD在FPGA中实施4G无线球形检测器 -- 正文
正文

在FPGA中实施4G无线球形检测器

[10-21 14:24:02]   来源:http://www.592dz.com  EDA/PLD   阅读:9437

 

概要:受欢迎。不过,直接实施的复杂性会随着天线和调制方案的增加呈指数级增强,使ASIC或FPGA仅能用于使用少数天线的低密度调制方案。在MIMO检测中,既能保持与最佳ML检测相媲美的BER性能,又能大幅降低计算复杂性的出色方法非球形检测法莫属。这种方法不仅能够降低SDM和空分多接入系统的检测复杂性,同时又能保持与最佳ML检测相媲美的BER性能。实现球形检测器有多种方法,每种方法又有多种不同算法,因此设计人员可以在诸如无线信道的吞吐量、BER以及实施复杂性等多项性能指标之间寻求最佳平衡。虽然算法(比如K-best或者深度优先搜索)和硬件架构对MIMO检测器的最终BER性能显而易见有极大的影响,不过一般在球形检测之前进行的信道矩阵预处理也会对MIMO检测器的最终BER性能产生巨大影响。信道矩阵预处理可繁可简,比如根据对信道矩阵进行的方差计算结果 (variance computation),计算出处理空分复用数据流的优先次序,也可以使用非常复杂的矩阵因子分解方法来确定更为理想(以BER衡量)的数据流处理优先次序。Signum Concepts是一家总部位于圣地亚哥的通信系统开发公司,一直与赛灵思和莱斯大学(Rice University)开展通力合作,运用FPGA设计出了用于802.16e宽带

在FPGA中实施4G无线球形检测器,http://www.592dz.com

  WiMAX对宽带互联网接入如同手机对语音通信一样意义非凡。它可以取代DSL和有线服务,随时随地提供互联网接入。只需要打开计算机,连接到最近的WiMAX天线,就可以畅游全世界的网络了。

  宽带互联网接入遇到的最大挑战之一就是移动性,而这正是最新的WiMAX标准所要解决的。IEEE 802.16e-2005介绍了传输和接收过程中多根天线的用法,即MIMO概念,又称为多输入多输出,是移动WiMAX的一个关键特性。

  空分复用(SDM) MIMO处理可显著提高频谱效率,进而大幅增加无线通信系统的容量。空分复用MIMO通信系统作为一种能够大幅提升无线系统容量和连接可靠性的手段,近来吸引了人们的广泛关注。

  MIMO无线系统最佳硬判决检测方式是最大似然(ML)检测器。ML检测因为比特误码率 (BER)性能出众,非常受欢迎。不过,直接实施的复杂性会随着天线和调制方案的增加呈指数级增强,使ASIC或FPGA仅能用于使用少数天线的低密度调制方案。

  在MIMO检测中,既能保持与最佳ML检测相媲美的BER性能,又能大幅降低计算复杂性的出色方法非球形检测法莫属。这种方法不仅能够降低SDM和空分多接入系统的检测复杂性,同时又能保持与最佳ML检测相媲美的BER性能。实现球形检测器有多种方法,每种方法又有多种不同算法,因此设计人员可以在诸如无线信道的吞吐量、BER以及实施复杂性等多项性能指标之间寻求最佳平衡。

  虽然算法(比如K-best或者深度优先搜索)和硬件架构对MIMO检测器的最终BER性能显而易见有极大的影响,不过一般在球形检测之前进行的信道矩阵预处理也会对MIMO检测器的最终BER性能产生巨大影响。信道矩阵预处理可繁可简,比如根据对信道矩阵进行的方差计算结果 (variance computation),计算出处理空分复用数据流的优先次序,也可以使用非常复杂的矩阵因子分解方法来确定更为理想(以BER衡量)的数据流处理优先次序。

  Signum Concepts是一家总部位于圣地亚哥的通信系统开发公司,一直与赛灵思和莱斯大学(Rice University)开展通力合作,运用FPGA设计出了用于802.16e宽带无线系统的空分复用MIMO的MIMO检测器。该处理器采用信道矩阵预处理器,实现了类似贝尔实验室分层空时(BLAST)结构上采用的连续干扰抵消处理技术,最终达到了接近最大似然性能。

  系统考虑因素

  理想情况下,检测过程要求对所有可能的符号向量组合进行ML解决方案计算。球形检测器旨在通过使用简单的算术运算降低计算复杂性,同时还能够保持最终结果的数值完整性。我们的方法,第一步是把复杂的数值信道矩阵分解为只有实数的表达式。这个运算增加了矩阵维数,但简化了处理矩阵元的计算。降低计算复杂性的第二个方面体现在,减少检测方案分析和处理的可选符号。其中,对信道矩阵进行QR分解是至关重要的一步。


  图1 用于球形检测器MIMO检测的

  部分欧几里德距离度量方程

  图1显示的是如何进行数学转换,得出计算部分欧几里德距离度量法的最终表达式。欧几里德距离度量法是球形检测过程的基础。R代表三角形矩阵,用于处理以矩阵元rM,M开始的可选符号的迭代法。其中,M代表信道矩阵以实数表达的维数。该解决方案通过M次迭代定义出遍历树结构,树的每层i对应第i根天线的处理符号。

  实现树的遍历有几种可选方法。在我们的实施方案中,则使用了广度优先搜索法,这是因为该方法采用备受欢迎的前馈结构,因此具有硬件友好特征。在每一层,该实施方案只选择K个距离最小的幸存节点来计算扩展情况。

  球形检测器处理天线的次序对BER性能有着极大的影响。因此,在进行球形检测前,我们的设计采用了类似于V-BLAST技术的信道重新排序技术。

  该方法通过多次迭代,计算出信道矩阵的伪逆矩阵的行范数,然后确定信道矩阵最佳列检测次序。根据迭代次数,该方法可以选择出范数最大或者最小的行。欧几里德范数最小的逆矩阵行表示天线的影响最强,而欧几里德范数最大的行则表示天线的影响最弱。这种新颖的方法首先处理最弱的数据流,随后依次迭代处理功率从高到低的数据流。

  FPGA 硬件应用

  为实现上述系统,我们采用了赛灵思 Virtex-5 FPGA技术。该设计流程采用赛灵思System Generator进行设计捕获、仿真和验证。为了支持各种不同数量的天线/用户和调制次序,我们将检测器设计用于要求最高的4x4、64-QAM情况下。

  我们的模型假定接收方非常清楚信道矩阵,这可以通过传统的信道估算方法来实现。在信道重新排序和QR分解之后,我们开始使用球形检测器。为准备使用软输入、软输出信道解码器(如turbo解码器),我们通过计算检测到的比特的对数似然比(LLR)来生成软输出。

  该系统的主要架构元素包括数据副载波处理和系统子模块管理功能,以便实时处理所需数量的子载波,同时最大程度地降低处理时延。对每个数据副载波都进行了信道矩阵估算,限定了每个信道矩阵可用的处理时间。对选中的FPGA而言,其目标时钟频率为225MHz,通信带宽为5MHz(相当于WiMAX系统中的360个数据子载波),每个信道矩阵间隔可用的处理时钟周期数为64。

  我们采用硬件功能单元精湛的流水线和时分复用(TDM)功能,以达到WiMAX OFDM符号的实时要求。

  除了高数据率外,在架构设计指导过程中控制子模块时延也是一个重要的问题。我们通过引入连续信道矩阵的TDM解决了时延问题。这种方法可以延长同一信道矩阵元之间的处理时间,同时还能保持较高的数据吞吐量。构成TDM组的信道数会随着子模块的不同而变化。在TDM方案中,信道矩阵求逆过程用了5个信道,而有15个信道在实数QR分解模块中进行了时分复用。

[1] [2]  下一页


标签:EDA/PLDeda技术大全,eda技术实用教程EDA/PLD
《在FPGA中实施4G无线球形检测器》相关文章